
DSG with netCDF Enhanced
Data Model

2017 EarthCube netCDF-CF
Workshop

Challenges

• Irregular point data are more
difficult to map to netCDF data
model than grids

• Duplicate information...
• Or need ragged arrays

Requirements

• Work well with existing clients
• Python
• netCDF-Java

• Support realtime data streams
• My use cases:

• U.S. upper air data
• U.S. surface station (i.e. METAR)

netcdf stations {
 dimensions:
 obs = UNLIMITED; // currently 6
 variables:
 float lat(obs);
 float lon(obs);
 string stid(obs);
 double time(obs);
 float temperature(obs);
 data:
 lat = 39.9,40,35.25,39.9,35.25,39.9;
 lon = -104.9,-105,-97.1,-104.9,-97.1,-104.9;
 stid = "KDEN","KBOU","KOKC","KDEN","KOKC","KDEN";
 time = 7776000,7776000,7776000,7777800,7777800,
 7778100;
 temperature = 15,16,25,15.5,25.2,15.6;
}

Contiguous Array

Contiguous Array

• One dimension for observations
• Every array has the same size
• Repeats values for spatial metadata
• Simple
• Need to scan entire file to find all

observations for a particular station
• In NetCDF-3, wastes space
• Compression makes this less worrisome (?)

netcdf stations {
 dimensions:
 obs = UNLIMITED; // currently 6
 station = UNLIMITED; // currently 3
 variables:
 float lat(station);
 float lon(station);
 string stid(station);
 int index(obs);
 double time(obs);
 float temperature(obs);
 data:
 lat = 39.9,40,35.25;
 lon = -104.9,-105,-97.1;
 stid = "KDEN","KBOU","KOKC";
 index = 0,1,2,0,2,0;
 time = 7776000,7776000,7776000,7777800,7777800, 7778100;
 temperature = 15,16,25,15.5,25.2,15.6;
}

Ragged Array

Ragged Array

• One dimension for observations, one for
stations

• Extra observation-length array for index
mapping observation to station

• Less extra space usage
• More complicated
• Need to scan entire file to find all

observations for a particular station
• Less redundant information

Extended Model

• Can the netCDF extended model
make these simpler?
• Compound types
• Vlens
• Groups

Compound Types

• Does not address ragged array
challenge

• Performance optimization

netcdf stations {
 types:
 compound obs_t {
 float lat;
 float lon;
 string stid;
 double time;
 float temperature;
 }
 dimensions:
 obs = UNLIMITED; // currently 6
 variables:
 obs_t obs(obs);
 data:
 obs = {39.9,-104.9,"KDEN",7776000,15},
 {40,-105,"KBOU",7776000,16},
 {35.25,-97.1,"KOKC",7776000,25},
 {39.9,-104.9,"KDEN",7777800,15.5},
 {35.25,-97.1,"KOKC",7777800,25.2},
 {39.9,-104.9,"KDEN",7778100,15.6};
}

Compound Data Type, Obs Dim

Compound Data Type, Obs Dim

• One dimension for observations
• Compound data type used to keep all

values for a particular observation
• Better data locality may improve I/O,

compression
• Dealing with compound data type may be

complex for client
• Same repeated information as Contiguous

Array--but could be addressed
• This CDL crashed ncgen (fixed)

Vlen

• Variable length data type
• Solves the ragged array problem
• What would really help is Vlen as a

dimension--as a data type it incurs
some “challenges”

netcdf stations {
 types:
 float (*) variable_time_float;
 double (*) variable_time_double;
 dimensions:
 station = UNLIMITED; // currently 3
 variables:
 float lat(station);
 float lon(station);
 string stid(station);
 variable_time_double time(station);
 variable_time_float temperature(station);
 data:
 lat = 39.9,40,35.25;
 lon = -104.9,-105,-97.1;
 stid = "KDEN","KBOU","KOKC";
 time = {7776000,7777800,7778100}, {7776000},
 {7776000,7777800};
 temperature = {15,15.5,15.6},{16},{25,25.2};
}

VLen Data Type, Station Dim

VLen Data Type, Station Dim

• One dimension for observations
• VLen data type used to handle ragged

arrays
• Finding data for a station only requires

finding a single index
• All data for a particular variable stored

together
• Similar to Indexed Ragged Array, but

exploiting VLen to rationalize per-station
storage

Groups

• Handle changing dimensionality by
separating stations into their own
groups

• Essentially uses groups as a
dimension

netcdf stations {
 dimensions:
 station = UNLIMITED ;
 variables:
 float lat(station) ;
 float lon(station) ;
 string stid(station) ;
 data:
 lat = 39.9, 40, 35.25 ;
 lon = -104.9, -105, -97.1 ;
 stid = "KDEN", "KBOU", "KOKC" ;
 group: KDEN {
 dimensions:
 obs = UNLIMITED ;
 variables:
 int index ;
 double time(obs) ;
 float temperature(obs) ;

Group-per-station
 data:
 index = 0 ;
 time = 7776000, 7777800,
 7778100 ;
 temperature = 15, 15.5, 15.6;
 } // group KDEN
 group: KBOU {
 dimensions:
 obs = UNLIMITED ;
 variables:
 int index ;
 double time(obs) ;
 float temperature(obs) ;
 data:
 index = 1 ;
 time = 7776000 ;
 temperature = 16 ;
 } // group KBOU

Group-per-station
• All station metadata stored at global scope
• Each station has its own group
• Eliminates ragged arrays, VLen, and

compound data types
• Client must scan all groups to get data for

all stations
• No need for all stations to have same

variables
• Can clients handle ~6000 groups?
• Locality probably same as using compound

data type

netcdf stations {
 types:
 compound obs_t {
 double time;
 float temperature;
 }
 obs_t (*) variable_obs_t
 compound stn_t {
 float lat;
 float lon;
 string stid;
 variable_obs_t obs;
 }
 dimensions:
 station = UNLIMITED;
 variables:
 stn_t stations(station)

data:
 stations = {39.9,-104.9,"KDEN",
 {{7776000,15},
 {7777800,15.5},
 {7778100,15.6}}},
 {40,-105,"KBOU",
 {{7776000,16}}},
 {35.25,-97.1,"KOKC",
 {{7776000,25},{7777800,25.2}}}
}

All Together now

All Together Now

• “Compound VLen Data Type nested within
Compound Data Type, Unlimited Station
Dimension”

• Most complex
• Not clear all clients can even handle this
• Puts all information for a station together
• Slicing across stations is hard

Benchmarks

• Used collection of 400k METAR
records

• Ragged arrays 25% faster to write
and 35% smaller

• No performance benchmarks for
new stuff

Take Aways

• All of the extended model
extensions require manual iteration

• In Python, this has made testing and
development excruciating

• Vlen is problematic specifically for
realtime data--you don’t append
values

My Opinion?

• Vlen is not worth the complexity
• Compound data types are not as

bad...but I don’t see the benefits
either

• Groups are good, though I have
concerns about having to scan
through 6000 of them

• Without a true ragged array (i.e. vlen
dimension) classic model is fine

